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The influence of compressibility upon the structure of homogeneous sheared turbu-
lence is investigated. For the case in which the rate of shear is much larger than the
rate of nonlinear interactions of the turbulence, the modification caused by compress-
ibility to the amplification of turbulent kinetic energy by the mean shear is found to be
primarily reflected in pressure—strain correlations and related to the anisotropy of the
Reynolds stress tensor, rather than in explicit dilatational terms such as the pressure—
dilatation correlation or the dilatational dissipation. The central role of a ‘distortion
Mach number’ M; = S//a, where S is the mean strain or shear rate, / a lengthscale
of energetic structures, and a the sonic speed, is demonstrated. This parameter has
appeared in previous rapid-distortion-theory (RDT) and direct-numerical-simulation
(DNS) studies; in order to generalize the previous analyses, the quasi-isentropic
compressible RDT equations are numerically solved for homogeneous turbulence
subjected to spherical (isotropic) compression, one-dimensional (axial) compression
and pure shear. For pure-shear flow at finite Mach number, the RDT results dis-
play qualitatively different behaviour at large and small non-dimensional times St:
when St < 4 the kinetic energy growth rate increases as the distortion Mach number
increases; for St > 4 the inverse occurs, which is consistent with the frequently ob-
served tendency for compressibility to stabilize a turbulent shear flow. This ‘crossover’
behaviour, which is not present when the mean distortion is irrotational, is due to the
kinematic distortion and the mean-shear-induced linear coupling of the dilatational
and solenoidal fields. The relevance of the RDT is illustrated by comparison to the
recent DNS results of Sarkar (1995), as well as new DNS data, both of which were
obtained by solving the fully nonlinear compressible Navier—Stokes equations. The
linear quasi-isentropic RDT and nonlinear non-isentropic DNS solutions are in good
general agreement over a wide range of parameters; this agreement gives new insight
into the stabilizing and destabilizing effects of compressibility, and reveals the extent
to which linear processes are responsible for modifying the structure of compressible
turbulence.

1. Introduction

There is now consensus in the literature that the ‘intrinsic compressibility’ (non-
zero divergence) of a turbulent velocity field tends to inhibit mixing and reduce the
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amplification rate of turbulent kinetic energy produced by a mean velocity gradient,
with respect to the purely solenoidal case. This has been observed, for example,
in experimental (Papamoschou & Roshko 1988; Clemens & Mungal 1995) and
numerical (Sandham & Reynolds 1991; Vreman, Sandham & Luo 1996) studies of
mixing layers, and has been demonstrated by direct numerical simulation (DNS) of
compressible homogeneous shear flow (Blaisdell, Mansour & Reynolds 1991, 1993;
Sarkar, Erlebacher & Hussaini 1991a; Sarkar 1995). (The reader is referred to
Lele 1994 for an overview of other numerical investigations; the experimental work
is surveyed in Fernholz & Finley 1977, 1980, Fernholz et al. 1989 and Settles &
Dodson 1991. See Bradshaw 1977, Friedrich 1993, Lele 1994 and Spina, Smits
& Robinson 1994 for general introductions to compressible turbulent flows.) On
the other hand, recent analyses by Jacquin, Cambon & Blin (1993) and Cambon,
Coleman & Mansour (1993) (see also Lele 1994) have shown that, because of the
multi-timescale and initial-value nature of the problem, the compressibility-induced
growth-rate reduction is not universal. They used rapid distortion theory (RDT) and
DNS to show that when a sufficiently broad parameter range is considered, the flow
can experience an increase with increasing compressibility (as measured by a relevant
Mach number) of the kinetic energy growth rate when the turbulence is subjected
to rapid (but finite) axial compression. Since the RDT analysis is valid for mean
deformations other than axial compression (see Cambon et al. 1993 and below), it
is possible that under certain conditions homogeneous shear flow might also fail
to exhibit a decrease of the kinetic energy amplification rate with increasing Mach
number, and thus fail to display the behaviour commonly thought to be typical of
compressible turbulence. Such conditions do in fact exist, as this paper will show.
Both analytical and numerical studies reveal the relevance of a ‘distortion Mach
number’ My = S/ /a, to parameterize rapidly sheared or strained compressible turbu-
lence; here S is a mean strain or shear rate, 7 an integral lengthscale and a the mean
sonic speed. This parameter was first introduced by Durbin & Zeman (1992), and
denoted ‘AM’, since it can be interpreted as the mean Mach number change across
an ‘eddy’. Durbin & Zeman’s RDT analysis only addressed irrotational deformations
and is restricted to small values of AM. Jacquin et al. (1993) and Cambon et al. (1993)
later investigated the full AM range for the irrotationally strained case; they defined
the solenoidal and ‘pressure-released’ regimes, associated with the small and large
AM limits, respectively, and using RDT and DNS found a monotonic increase of the
turbulent energy growth rate with increasing AM. Because AM can be interpreted
as the product of a turbulent Mach number M, and the ratio r of turbulent to
mean-distortion timescales (see below), an increase of AM represents, for fixed r, an
increase of M,; this monotonic increase in growth rate observed when passing from
the solenoidal to pressure-released regime can therefore be viewed as an example of
the ‘atypical’ compressible-turbulence behaviour cited above (since an increase in M,
is not associated with increased stability). Sarkar (1995) also used the S//a parameter
(which he referred to as a ‘gradient Mach number’ M,), to quantify compressibility
effects for homogeneous shear flow. But instead of agreeing with the axial-strain
findings, his DNS results show, at large non-dimensional times St, a monotonic
decrease of the turbulent kinetic energy growth rate with increasing M,, consistent
with the usual understanding that compressibility tends to stabilize the turbulence. At
first glance, the lack of destabilization with increasing M, might be ascribed to the
irrelevance of the rapid-distortion limit to the shear-flow runs he studied, which would
in turn imply that linear processes play no role in the M,-dependence he observed.
The recent work of Simone & Cambon (1995a,b), however, suggests that this is not
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the case: as we will show below, the destabilizing influence as M, — oo (including
the range considered by Sarkar) is also present for pure-shear distortions, but only
at small St; for large St the analysis predicts the classic stabilization with increasing
M, found by Sarkar (1995). Note that because the axially compressed case can only
exist for finite times (the time-dependent strain rate is given by S(t) = So/(1 + Sot),
where Sy = S(0) is the initial rate of compression — and thus at |Sy|t = 1 the flow
domain collapses to a single point; Cambon et al. 1993), there was no need in the
previous axial-compression study to differentiate between long- and short-time be-
haviour in terms of |Sy|t. Interestingly, Sarkar’s (1995) results also exhibit trends
with M, that are opposite at large and small St, and therefore consistent with the
findings presented here (see his figure 1, for example). The early-time behaviour was
not discussed, however, since he focused on asymptotic M,-dependence at large St,
and could therefore use ‘unphysical’ initial conditions, thus producing data at small
St that are not fully representative of a ‘real’ turbulent field. (This is appropriate
because the flow ‘forgets’ its initial state under the influence of the mean shear, and
becomes valid at later times (Blaisdell et al. 1993; Sarkar 1995).) In the DNS data
shown here, any early-time ambiguity is avoided by ‘aging’ the initial conditions until
they become ‘physical’, as explained below.

The parameter AM ~ M, ~ S//a appears naturally when scaling the (linearized)
RDT equations for homogeneous compressible turbulence. In view of this generality,
this parameter will henceforth be solely referred to as the ‘distortion Mach number’ M,
(following a suggestion by L. Jacquin, private communication). The separate relevance
of both a ‘distortion’ and a ‘turbulent’” Mach number (Sarkar 1995) indicates the
previously mentioned multi-timescale nature of the problem: at least three different
timescales must be considered. These are the mean distortion time,

1 = (Ui Uy)™", (1.1)
the ‘turbulent decay’ or ‘turn-over’ time,
. =7/q, (1.2)
and the timescale linked to the sonic speed,
T, =1{/a (1.3)

(where U;; is the mean velocity gradient, and %qz is the turbulent kinetic energy). The
distortion speed, r = 7,/1y, is the only parameter needed to characterize homogeneous
turbulence that is incompressible, at least for large Reynolds numbers. However,
when intrinsic compressibility is present, the ratio of the two latter timescales, which
amounts to a turbulent Mach number M, = 7,/1, = q/a, must also be accounted
for. A third non-dimensional ratio, the distortion Mach number M,; = t,/1,, is also
relevant. Any two of these three parameters (along with the ratio of specific heats,
the Reynolds and Prandtl numbers, and possibly the initial conditions) uniquely
defines the state of the compressible flow, although Sarkar (1995) has shown that
compressibility effects are more sensitive to variations in M, than they are to changes
in M,. The reasons for the crucial role of M, will be revealed below.

Two approaches have previously been taken when attempting to determine the ef-
fects of compressibility on turbulence. The first, which we shall refer to as the ‘explicit’
or ‘energetic’ approach, involves measuring the dilatational terms (the pressure—
dilatation and dilatational-dissipation correlations) that appear in the turbulent
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kinetic energy (TKE) budget. For homogeneous turbulence, this equation is

g 2
@ <q2> =@—6s—€d+nd, (14)

in which £ is the rate of production by the mean flow, e; the rate of solenoidal
dissipation, e; the rate of dilatational dissipation, and II; the pressure—dilatation
correlation (Blaisdell et al. 1991). Note that the last two terms on the right-hand side
do not appear when the flow is incompressible. The explicit/energetic approach is
embodied in the modelling of ¢; and I1; done by Zeman (1990), Sarkar et al. (1991b)
and others.

On the other hand, one may use an ‘implicit’ strategy (as is done here) whereby
the effects of compressibility are assumed to be felt primarily through modification to
the structure of the turbulence — which affects the pressure field, the pressure—strain
correlation tensor, the anisotropy of the velocity field, and in turn the production
term £ in the TKE equation. Recall that 2 depends on the anisotropy of the
Reynolds-stress tensor (RST) since 2 = —uu;U;; with ua; = ¢*(8;;/3 + bij), and
that b;;, the Reynolds-stress anisotropy tensor, is governed by an equation that
involves the pressure—strain tensor. The recent homogeneous-shear DNS results
of Sarkar (1995), cited above, demonstrate the relevance of the implicit/structural
approach, since the effect of compressibility was found to modify the RST anisotropy
component bj; much more significantly than it does the explicit dilatational terms.
Moreover, Speziale, Abid & Mansour (1995) have used the DNS results of Blaisdell
et al. (1993) to find that for homogeneous shear all components of b;; are altered
by compressibility. Any RDT study naturally accommodates the implicit/structural
method, since it can provide a straightforward prediction of the ‘rapid part’ of the
fluctuating component of pressure and the related pressure—strain correlations, as
well as changes to b;;. In contrast, Durbin & Zeman (1992) used RDT to illustrate
the role, during a mean axial compression with low M,, of the explicit contribution
provided by the pressure—dilatation term, and proposed that it should be taken into
account when M, ~ 0 and r > 1. Although I1, is likely to be important in some
situations (in shock—turbulence interactions, for example), its significance was perhaps
unrealistically magnified in their study, since it was measured with respect to the rate
of TKE dissipation; when compared to the rate of TKE production — the dominant
term during a rapid compression — it appears much less important. A recent DNS
study of the compressible mixing layer (Vreman et al. 1996) has shown that the
pressure—dilatation and dilatational-dissipation terms are insignificant, even when
the convective Mach number is of order one. This also points to the implicit, rather
than the explicit, as the more relevant of the two approaches.

As with efforts to close the TKE equation, attempts to construct second-order mod-
els valid for fully compressible flows began, quite naturally, with the explicit/energetic
approach; unfortunately (as one might expect from the above survey), these led to
a tendency to over-emphasize the role of explicit dilatational terms (see also Huang,
Coleman & Bradshaw 1995 for more on this point); little attention has been paid to
modifications to pressure—strain correlations and the related anisotropic structure of
the RST (see Cambon et al. 1993 for an exception).

The aim of this paper is to extend the rapid distortion analysis previously applied
to irrotationally strained flow to compressible homogeneous turbulence subjected
to pure shear. It thus extends the work of Cambon et al. (1993) and completes
the study begun by Simone & Cambon (1995a,b). The degree to which RDT can
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be used to explain previously observed results, especially those of Sarkar (1995),
is ascertained. We find that many of the features of compressible shear flow that
were previously thought to be solely due to nonlinear processes (in particular, the
stabilization associated with intrinsic compressibility) are captured by the RDT —
and thus are due to modifications governed by linear equations. These linearized
equations are solved for the parameters of interest using a generalized RDT code
(Simone 1995). In order to determine the importance of nonlinear and non-isentropic
effects, the RDT results are compared to full Navier—Stokes solutions obtained via
DNS, using the code of Spyropoulos & Blaisdell (1996).

The paper is organized as follows. The formalism of compressible quasi-isentropic
RDT is introduced in §2, with a brief overview of the numerical method given. Two
test cases (isotropic and axial compression) are presented in §3 to validate the RDT
code; results are contrasted to analytical solutions when they exist, and to appropriate
DNS data when they do not. A RDT and DNS study of compressible homogeneous
turbulence subjected to pure shear is discussed in §4. A summary and discussion of
the main results and conclusions are contained in §5, which also revisits the issue of
the stabilizing effect of compressibility in turbulent shear flow.

2. Rapid-distortion analysis for compressible homogeneous turbulence

Rapid distortion theory (Batchelor & Proudman 1954) combines linearization of the
governing equations with averaging to describe histories of the statistics of turbulence
in the presence of mean deformations that are rapid compared to timescales of the
fluctuations. The starting points of RDT and linear stability analysis are the same,
provided the background field defined in the RDT is a solution of the Euler equations,
and that the disturbances are statistically homogeneous. A convenience of the RDT
technique is that solutions of the linearized equations can be computed a priori,
before they are used to determine the evolution of the statistics: the linear ‘transfer
matrix’ that links any realization of the disturbance field at time ¢ to its initial state
at t = 0 can be computed independently of the disturbance field, in terms of the
initial wavevector, the mean-flow characteristics and the elapsed time. This matrix,
denoted g in the following, contains all the information of a linear stability analysis,
and as shown below allows the history of the statistics to be obtained once the initial
spectrum tensors are specified.

It is generally assumed that linear solutions are valid for turbulent flows only for
distortions that are sufficiently rapid (such that St, = §//q > 1) and limited to short
times (compared to St) and large scale (or small wavenumber k, with kq/S < 1). In
practice, however, the exact range of validity is difficult to predict, even for the pure-
solenoidal case. Analytical investigations of the relative importance of the nonlinear
and linear terms are just beginning (for example Kevlahan & Hunt 1996, who consider
irrotational distortions of solenoidal turbulence). These studies are complicated by
a number of factors, including the narrow domain in spectral space of the relevant
(most amplified) modes and the temporal distortion of the wavevectors. We stress
that ‘global’ parameters that use single characteristic scales (such as SZ/q) to indicate
the relevance of the rapid-distortion solutions can only be approximate, and in fact
the predictive success of such measures will depend upon the statistical quantity being
examined. Consequently, the extent to which the RDT predictions will agree with the
actual (in this case, DNS) results will only be fully known after the two have been
compared. After the flow parameters have been specified, and the comparison has
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yielded this a posteriori information about the importance of nonlinear mechanisms,
the practical significance of this study should be clear.

In compressible turbulence, the disturbance field includes solenoidal and dilatational
velocity modes, and an entropic mode. In the linear inviscid limit, and in the absence
of mean gradients or body forces, the dilatational velocity is coupled to pressure
disturbances that satisfy an acoustic wave equation, and the solenoidal (or vortical),
acoustic and entropic modes are independent of each other (Kovasznay 1953; Monin
& Yaglom 1971), and, for example, the pressure fluctuations have no influence on the
solenoidal component. Nonlinear interactions in weakly compressible homogeneous
isotropic turbulence (i.e. with no mean gradients) were studied by Marion (1988) using
a two-point closure model. He showed that a solenoidal field can generate and sustain
an acoustic field through nonlinear interactions (the entropic mode was removed from
consideration by making the barotropic assumption). In the compressible RDT of
Durbin & Zeman (1992), Jacquin et al. (1993) and Cambon et al. (1993), the turbulence
is assumed to be quasi-isentropic, in that entropy fluctuations are only advected by the
mean flow — which implies only equations for velocity and pressure disturbances need
to be considered, as in the Marion (1988) study. But since the linearized equations can
become strongly coupled due to the mean velocity gradient when the flow is subjected
to a mean deformation, the acoustic regime can be modified and even disappear for
high values of the distortion Mach number M,. This will be illustrated shortly.

Assuming that the fluid is an ideal gas with constant specific heats, and that the
fluctuations of density p’ are much smaller than their mean p, the equations for the
fluctuating (disturbance) component of velocity u;, pressure p and entropy s can be
written

u,» + Ui’]'l/lj = —Q, (2161)
' p
p
A 2.1b
<VP> . (10)
§=0, (2.1¢)

where lower- and upper-case italic symbols will be used throughout to denote respec-
tively fluctuation and mean (Reynolds-averaged) quantities; y is the ratio of specific
heats. Viscous terms are omitted for now for the sake of brevity (they will briefly
re-enter the analysis below). Employing the formalism of continuum mechanics (see
e.g. Eringen 1980), spatial derivatives in (2.1) are with respect to the Eulerian (spatial)
coordinate x;, and the dot superscript denotes a substantial derivative along mean flow
trajectories, which is the partial derivative with respect to time at fixed Lagrangian
(material) coordinate X;, defined by

_ 90

VY=""L4U:(); 2.2
(=57 +Ui() 2)

The relationship between the Eulerian and Lagrangian coordinates is given by
Xi = X,‘(X, t, 0) and dx,' = U,’dt + FleXJ, (23)

where x; is the position at time t of a fluid particle moving with the mean flow,
which has the position X; at the initial time ¢t = O (hence the third argument
for x in (2.3)), and U; = x; = (0x;/0t)x, the latter derivative being at fixed X.
The gradient displacement tensor Fj; = 0x;/0X; (Eringen 1980) is defined by the
mean-flow distortion. Limiting ourselves to mean flows that maintain the spatial
homogeneity of the turbulence requires the mean pressure gradient 0P /0x; to be zero
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and the mean velocity gradients U;; to be uniform in space (Blaisdell et al. 1991).
Therefore

Ui = Uij(1) x; (2.4)
and
Ui = (Uij + U Uy) x; = X;Fy; =0, 2.5)
where we have used
Fy=UyF; and  x = Fyt,0)X, (2.6)

which is the solution of X; = U;;x; with x; = X; at t = 0, and specifies (2.3) for
space-uniform distortions. This implies (Cambon et al. 1993)

F,'j(lf, 0) = 51']' + Aijt and U,’J([) = Ai[Fl;l(t, 0), (27)

where F~!' (which is equivalent to ‘B’ in Rogallo 1981) is the inverse of F. The above
equation describes the most general homogeneity-preserving mean flow, for which the
mean acceleration U; = X; = F,-jX ;j 1s zero; specific examples for various distortions
are given by Blaisdell et al. (1991). Equation (2.7) is valid for an arbitrary constant
(not necessarily symmetric) matrix A, provided the determinant of F, which is equal
to the volumetric ratio J(t) = p(0)/p(t), remains positive.

The Helmholtz decomposition of the velocity field and the subsequent solution of
(2.1) are facilitated by using a three-dimensional Fourier transform (denoted here by
the symbol 7). The Fourier transform u;(k, t) of the velocity fluctuation u; is expressed
in an orthonormal frame of reference with bases (e, e, ¢®) normal and parallel
to the the wavevector k, with the parallel component e§3’ = k;/k, where k is the
wavevector modulus. As a result

Uik, 1) = 3V (k, 0)elV (k) + 3V (k, 1)eP (k) + P (k, )el (k) . (2.8)

-~

-~
S a
Mi Mi

The first two terms are the Fourier transform of the solenoidal velocity u}; the third is
the dilatational contribution %¢. This representation involves the minimum number of
necessary independent components and conserves all tensoral properties (invariants)
of the velocity field. Note that the solenoidal bases (e, ) are specified to within
an angle of rotation around the wavevector k; a more precise definition (see Cambon
et al. 1993) will be used when needed. Classical descriptions in terms of vorticity w;
and divergence u;; are easily recovered as

o = ik (e — 56" (29)

and
1y, = ik, (2.10)

For convenience, the pressure mode is non-dimensionalized by the mean sound speed
a = (P/p)'/?, so that the fourth dependent variable becomes

o~

oW = iﬁ%' (2.11)

A linear system of equations for ¢, with i = (1,2,3,4), can now be derived from
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(2.1):
3" — (U — k)™ + mopp® + msp® =0, (2.12a)
3 — (U — 2k —my3) ) 4 ma, @™ + kap'® = 0, (2.12b)
" =13 =) U™ —kap® = 0. (2.12¢)

The operator (') — Uyy( ) is the Fourier transform of the substantial derivative (where
Uy = Uyy + Uyy + Usjs is the mean divergence), v is the kinematic viscosity and the
m;j components are given by

myp = e Uyjel) — el = U, el — eamRE, (2.13a)
mys = e Uyjel’) — el = ¢” (U,, —Uy) e, (2.13b)
my, = e Uyjel) — eel” = 27U jel?, (2.13¢)
my; = e’ Uj e, (2.13d)

where Greek super/subscripts (indicating solenoidal space) take only the value 1 or
2. The viscous terms in (2.12) have been included for the sake of completeness,
but are henceforth neglected (see Simone 1995 for a discussion of their influence).
The ‘rotation term’ Rg in (2.13a) is e(2 U, Je(1 if the polar axis is chosen as one of
the eigenvectors of the mean gradlent tensor; its general expression is available in
Cambon, Teissedre & Jeandel (1985). The overdot denotes a time derivative at fixed
K, which plays the same role here as X does in physical space, since

kiX,‘ = KiX,' with k,‘ = F;-l(t, O)KJ (214)

This reveals how the distortions in spectral and physical space are linked, and displays
an advantage of using the ‘mean-trajectories’ formalism. In the absence of viscosity,
solutions of (2.12a)—(2.12¢) can be expressed as

0" (k1) = J (1) g (k,1,0) (K., 0), (2.15)

where @)(K,0) are the initial values of the velocity and pressure modes, and g;;
are elements of the linear transfer matrix, which depend in general on both the
direction and magnitude of the wavevector k, and implicitly on time and mean
compression (if the mean velocity gradient has a non-zero trace). The volumetric
ratio J(t) = p(0)/p(t) in (2.15) accounts for the explicit mean compression (dilatation)
term present in (2.12). Once g;(t) for i,j = (1,2,3,4) are known, they can be used
to construct RDT histories of relevant covariance matrices, such as the second-order
spectral tensors, and then to compute single-point correlations by integrating over
the three-dimensional wavespace. To obtain solutions of g, (2.15) is substituted
into (2.12a)—(2.12¢), which is then solved numerically using a matrix exponentiation
method for an arbitrary set of initial conditions such that 6' (dits---,014). The
spectrum-tensor solutions (¢*(p, t)¢p")(k, t)) are then formed, using (2.15), as products
of g and appropriate initial spectra, which are derived by assuming that the fields are
initially isotropic and in ‘acoustic equilibrium’ (see below).

Initially isotropic, second-order correlations are given by

(11
G0k 0) = sk Py =234 216)
4

(no sum over i), where EM) = E® = lEW E® = E@ EW = E®) and EV),
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E@, and E" are respectively the conventional solenoidal, dilatational and ‘pressure’
(or ‘potential’) energy spectra; the asterisk denotes a complex conjugate, o is the
Dirac delta, and the angle brackets represent an ensemble average over statistically
independent realizations of the initial field. Note that because any second-order
statistical tensor can be written as the product of a deterministic quantity (quadratic
in g) and initial (ensemble-averaged) spectra E®(K,0), only the initial spectra — and
not the individual realizations (e.g. ¢’ and @) that make up the ensemble average
in (2.16) — must be specified to complete the initialization. For the sake of simplicity,
the initial fields are assumed to be in a state of ‘acoustic equilibrium’ (Sarkar et
al. 1991b); this amounts to setting the kinetic energy of the dilatational mode equal
to the potential energy of pressure mode, such that ((¢¥)*) and 1(p?)/(pa)* are
identical. A ‘strong form’ of this relation is employed here, by assuming that the
balance occurs at each wavenumber of the initial pressure and dilatational-velocity
spectra, with E@ = E® in (2.16).

Further details regarding (2.12) are found for the inviscid case in Cambon et
al. (1993). For present purposes we note that the matrix m;; has dimensions of an
inverse timescale !, which in general is determined by the relationship between the
magnitude of the mean gradient S = |U;;| and the sonic scale ak (and the viscous
terms; see Simone 1995). The RDT equations thus clearly display the importance of
the ratio of the gradient and sonic scales, S/ak, which at wavenumbers representing
the large energetic eddies is proportional to M,;. More insight into the equation set
results when the variables

y =% /Jk and z=0W/Ja=1ip/Jpd* (2.17)
are introduced; they allow (2.12) to be simplified to
g (y ‘
= kry = —z2° 2.18
It <(12> +K7y z, ( )
9 (:z s
o <k2> + d*z = +a’z’, (2.19)
where the solenoidal pressure term is
~(a) ~
P A g (2.20)
Jka Jpa

with ps/p = m3, ¥ /k (sum over «); for the sake of clarity, Z( )/%t has been
used in addition to the overdot notation to represent the substantial derivative.
This form of the equations immediately illustrates the relevant flow regimes. The
incompressible (solenoidal) limit is recovered when a — oo, and (2.19) reduces to
z = z* (which corresponds to the Poisson equation for the fluctuating pressure). Two
distinct non-solenoidal regimes can also be discerned, by considering the relative
magnitude of the terms in (2.18). When z° is negligible, oscillating acoustic behaviour
is found, corresponding to Kovasznay’s (1953) state of uncoupled vortical, acoustic
and entropic modes. This is the state usually assumed by other RDT calculations of
distorted compressible turbulence (e.g. Lee, Lele & Moin 1993). The current RDT
can account for more general cases, for which the solenoidal and dilational modes
are strongly coupled; an example is the pressure-released limit discussed by Jacquin
et al. (1993) and Cambon et al. (1993), which is recovered when k?y is ignored (since
this term couples the pressure and velocity fields: note that in terms of the modified
variables, the pressure transport equation (2.1b) is z = k?y). The role of the distortion
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Mach number in defining the pressure-released limit becomes clear when the initial
values S;!, ky!, and ay are used as characteristic time, length and velocity scales,
respectively, to define the non-dimensional variables (cf. Jacquin et al. 1993)

~ ~ 503 s
t=3St; k=£; Zi=£; }=ko—y; 6(3)=(p—; ’z“‘:ikoaoz. (2.21)
k() ay dop dg So
Equation (2.18) can thus be written
1 ~ 7.2~ 1 s =S
%<ﬁ95> Ky 1oz _ 92 (2.22)
gt \a It My Ma Dt 9t

which displays the significance of the distortion Mach number M, ~ .#, = Sy/koao,
in addition to the irrelevance as M; — oo of the k*y pressure-source term associated
with the pressure-released limit. To obtain the non-dimensional form appropriate for
the M; — 0 limit, one must use (aoko)~"' rather than So I as the characteristic time,
yielding for the M; — 0 flow

2 (195 . 9 97
LD ey =25 -, 25 2.23
It <a2 9t> Y It g (223)

where now ¢ = agko t. This shows that the ‘uncoupled-mode’ state mentioned above,
with the dilatational velocity unaffected by the solenoidal field, is produced by small
M,. Accordingly, M; — 0 characterizes an acoustic regime for the dilatational part
of the velocity field. The dilatational part of the energy remains bounded and close
to its initial value, so that the increase of total energy is mainly due to its solenoidal
part, which evolves independently of M,. The relevance of this order-of-magnitude
analysis has been verified using DNS for irrotationally distorted flows (Cambon et
al. 1993); we find in what follows that for the case of pure shear it is also valid, but
only for times short enough that the magnitude of the time-dependent wavevector
k is adequately approximated by its initial value k. At later times, because of the
coupling terms m,; (see (2.12)) and time-dependence of the coefficients that contain
k, a more sophisticated analysis is needed to determine the large-M, behaviour. Such
an analysis will be presented in §5.

3. RDT code validation

In this section analytic results are presented and used to verify the accuracy of the
RDT code. This code (known as ‘MITHRA’) is an updated version of one used in
previous linear-stability and RDT studies (cf. Cambon et al. 1985, 1994; Benoit 1992).
Since the original has been thoroughly tested and validated for non-compressible cases,
our focus here is upon flows for which the effects of compressibility are present.

We began by considering the case with no mean velocity gradients, which is charac-
terized by pure-viscous decay for the solenoidal modes and oscillating solutions with
possible damping and phase modification of coupled dilatation and pressure modes
— as one might expect since the flow is composed of linear acoustic waves. As shown
in Simone (1995), excellent agreement is found between the theoretical development
of the solenoidal and dilatational modes and that predicted by the RDT code.

The complexity of the coupling terms in (2.12) increases as the deformation ranges
from spherical compression to one-dimensional compression to pure shear (see fig-
ure 1); because analytic solutions exist for the first two, they provide ideal test cases
for the RDT code, as we will now show.
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FIGURE 1. (a) Initial computational domain; (b) after an isotropic compression; (c) after a
one-dimensional compression; (d) after a pure shear.

3.1. Spherical compression
Mean spherical (isotropic) compression is defined by

S

Uij=Soys S =g =S k=KJ, (3.1)
where K = (K, K5, K3) is the initial wavenumber vector, S, is the rate of strain at
t = 0, and either the volumetric ratio J(t) = p(0)/p(t) or the non-dimensional time
|So| t can be viewed as the time-advance parameter. We prefer the former, because
it characterizes the mean spatial distortion at time t as F does in (2.6), and yields
simpler analytical RDT solutions. As for any irrotational mean flow, m,; = 0, so the
solenoidal component of velocity is completely unaffected by the dilatational field.
The evolution of the solenoidal kinetic energy is then easily found to be given by
q2(t)/q2(0) = J=2/3(t) (where the zero subscript now indicates, as it will hereinafter, the
initial value). In addition, ms, = 0, which implies that the equation for the dilatational
field is also uninfluenced by the solenoidal velocity, and the right-hand side of (2.18) is
zero. A closed-form solution for this case has been found and discussed by Blaisdell,
Coleman & Mansour (1996); its form is simplest when y is equal to 5/3, so that k?
and a® have the same J~2/3 dependence, and simple solutions in terms of exp(iagk(t)t)
(where k(t) = J~'3(t)K, and qq is the initial mean sound speed) can be obtained
for the modified dilatation and pressure modes y = ¢ /Jk and z = p/Jpa’>. The
resulting general solution for the transfer matrix g, for the inviscid case, can then be
written:

2p = I (10,5, o B =(1,2) (3.2a)
g3 = J3 () cos(agkt);  gas = —J (1) sin(aokt) (3.2b)
g43 = J¥3(t) sin(agkt); gas = J?3(t) cos(apkt). (3.2¢)

As discussed in the previous section, all information about temporal evolution of the
statistics is explicitly contained in these terms, with J(t) accounting for the influence
of the mean compression, and any oscillatory behaviour (which can be prevented
by choosing acoustic-equilibrium initial conditions, such that E® = E® at t = 0)
captured by the sine and cosine factors. The history of the dilatational kinetic energy
can be derived from the initial dilatational field. Assuming that acoustic equilibrium
holds for the initial conditions, one obtains the same variation found for the solenoidal
energy, q3(t)/q3(0) = J=2/3(t). Having the initial data in acoustic equilibrium prevents
temporal oscillations in the histories of kinetic and potential (pressure variance)
energies. It also has the benefit of reducing the number of independent spectra
needed to fully define the initial conditions (2.16). The resulting excellent agreement
between analytical and numerical RDT results is shown in figures 2 and 3. Because
the initial field is in acoustic equilibrium, the RDT solutions, the pressure-released
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FiGURre 2. Histories, for three wavenumbers, of the gs; and g4; transfer matrix components for
isotropic compression: ,(32a); - , (3.2b); symbols, numerical RDT results. (a) k;; (b) k;
(c) k3 with k; < ky < k;.

approximation, and a WKB approximation (Durbin & Zeman 1992) yield equivalent
statistics; if the acoustic-equilibrium assumption is not made, however, differences
occur. These differences, together with the role of M, for rapid spherical compressions,
have been investigated in Blaisdell et al. (1996).

3.2. One-dimensional axisymmetric compression

The one-dimensional axisymmetric (axial) compression considered in this section is
defined by

Uij=S6u10j1; S(t)= S0 =SJ7 " ki=KJ'; ky=Ki; k;=Ks (33)
14 Spt

where the compression axis is in the x;-direction, and S, again represents the initial
compression rate. The solenoidal part of the velocity field is again independent of the
dilatational component and closed-form solutions can be easily derived in terms of
the volumetric ratio J. For the dilatational field, the solenoidal-dilatational coupling
term ms, (¢ = 1,2) renders the solution more complex. In the previous section it
was shown how the non-dimensional equation for ¢ brings out the importance of
the parameter M,, which is equal to the ratio between the initial acoustic timescale
and the mean distortion timescale; if M; < 1, a pure-acoustic regime is obtained,
independent of the evolution of the solenoidal mode, and the pressure and dilatational
modes exchange energy at frequency (ak)~'. The dilatational mode is exactly balanced
by the pressure gradient given by the solution of the solenoidal Poisson equation in
the pure-solenoidal case, and in this quasi-acoustic oscillatory (i.e. ‘decoupled’) regime
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FIGURE 3. Solenoidal and dilatational turbulent kinetic energy histories predicted by RDT code for
isotropic compression: (a) solenoidal; (b) dilatational for (M;, My),_, = (0.025,5).

Case M,y My (1Solg*/€)o (Re)o (a3/4%)o

Ay 0025 5 194 358 0.06
A, 011 87 800 184 0.18
Ay 029 29 100 500 0.09

TaBLE 1. Initial physical parameters for axial-compression runs

(which is present at M; < 1 for any irrotational strain) its energy is non-zero but
bounded. If M, > 1, the dilatational mode develops under the influence of the mean
distortion without being constrained by the pressure, and its energy is added to that
of the solenoidal mode, which is itself unaffected by M,; this in turn leads to an
increase, compared to the small-M, case, of the kinetic energy growth rate.

For the latter M, > 1 ‘pressure-released’ limit (Jacquin et al. 1993), the maximum
energy amplification occurs, such that

’(t) 2+J7°
a5 3

The other extreme, when M, < 1 (referred to as the ‘pseudo-acoustical’ regime, with
q3 < q?), corresponds to a minimum energy amplification given by the pure-solenoidal

RDT solution:
2 —1 =2 1\1/2
@ 2 72—

(see Cambon et al. 1993, or Jacquin et al. 1993).

Tests of the RDT code have been performed by comparing (3.4) and (3.5) with
the numerical results for axial compressions applied to various initial conditions; the
initial velocity-correlation spectra used for the RDT runs were obtained from the
DNS initial conditions described in Cambon et al. (1993). Table 1 lists the initial
parameters for the three cases we have examined (corresponding respectively to runs
A, B and C of Cambon et al. 1993). In figure 4, the total turbulent kinetic energy

(3.4)




320 A. Simone, G. N. Coleman and C. Cambon
8

?(t)/a*(0)

0 | L . 1
1 2 3 4 5
J@t
FIGURE 4. Turbulent kinetic energy histories for flow subjected to axial compression: lower,
(3.5); upper, (3.4); DNS results: -« - - - ,case Ay; ————- , case Ay; — -— -— , case Asz; no
symbols, numerical RDT results.
histories are plotted against the mean density ratio J~!. Comparisons are made

with the Cambon et al. (1993) DNS data and equations (3.4) and (3.5). The RDT
code captures the same trends found in the analytic and DNS results: increased
compressibility (M,) leads to an increase in the kinetic energy growth rate. Both
solenoidal and dilatational contributions to the kinetic energy are shown in figure 5
and compared to DNS results. We see a strong amplification of the dilatational
energy at the end of the compression, whereas the solenoidal field is unaffected by the
dilatational field, as predicted by the RDT. This agreement of the theoretical, DNS
and RDT results demonstrates the reliability of the code used to obtain the latter.

4. Rapid-distortion theory and direct numerical simulation for pure-shear
flow

4.1. RDT for pure-shear flow

The pure-shear flow is defined by U;; = $6;16;, and F;; = 6;; +S5t6;16j>. Without mean
compression (i.e. J(t) = 1) the appropriate time-advancing parameter is St, S being
the constant shear rate S = dU;/dx,. The mean trajectories in physical and spectral
space are

x; = X + StX,, X, = X>, x3 = X3 (4.1)
and
ki =Ky, k, = K, — K;St, ky = K. (42)

General solutions for solenoidal RDT have been found for #; in a fixed frame of
reference and extensively investigated (see e.g. Townsend 1976; Rogers 1991). Here
solutions are obtained in terms of the solenoidal components ¢® (« = 1,2) and are
most tractable when (e, e?) are chosen such that the polar axis n is in the cross-
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FIGURE 5. Solenoidal and dilatational turbulent kinetic energy histories for flow subjected to axial
compression: e, solenoidal; o, dilatational; DNS results: - - - - - ,case Aj;———— ,case Ay; — -— - — ,
case Aj; no symbols, numerical RDT results. (Note the collapse of the solenoidal TKE histories, as
predicted by the RDT.)

gradient direction, with n; = d;», so that e(zl) = 0. The corresponding physical meaning
of @™ will be discussed below. Substituting the mean velocity gradient for shear flow
into (2.12), one obtains

q,-B(l) + SK3 ~2) _ Sk2K3

G U (4.3a)
. K
(pe) = =0l (430)
. S’K3 2 (KiK', -
Y+ ao’k?y +2 E Ly = 25— < ;4 ) ko, (4.3¢)
z = k2, (4.3d)

where y = % /k, z = ¢¥ /ay = ip/pa} (defined as in (2.17)) and K’ = (K> +K3%)"/2.

Unlike for a purely irrotational mean deformation, such as the two considered
above, the non-zero coupling between the solenoidal and dilational velocity compo-
nents causes the solenoidal field to no longer be uninfluenced by the dilatational field.
The dilatational-solenoidal coupling is induced whenever the mean has a rotational
component, since its general form (2.13b) is m,; = eﬁ“)(Ui’j — j,,-)e@; for the case
of pure shear the coupling is expressed by the right-hand sides of (4.3a) and (4.3b).
We shall see below that the coupling is not important at small St, and depends only
weakly upon M, for large St, but otherwise its general behaviour is affected by St
and initial M, in a manner that is difficult to predict without obtaining full RDT
solutions.

The solenoidal limit is recovered for y = 0, and the solenoidal RDT solution
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(Cambon 1982; Salhi & Cambon 1996) is relatively simple:

KK k K
ok, 1) =o' (K — 2 (tan' (2 ) —tan~' [ =2 ) ) $P(K 4.4
@k, ) =9 ( ,0)+K,Kl (tan <K, tan™" | 27 | | 97(K,0),  (44q)

~ K
2k 1) = 7 V(K 0). (4:4b)
Using ¢! = 0 and ¢ = —K'/k yields

Vauy = —k21iy = —kK'3 — kk,p®, @, = —iK'gV, (4.5a, b)

and shows that kp® and @ are linked to the variables V?u, and w,, which are
typically the bases for studying the stability of parallel shear flow with the Orr—
Sommerfeld and Squire equations. In particular, the solenoidal (y = 0, ¥ = 0)
solution for the @®-equation is equivalent to conservation of V?u, along mean
trajectories (as shown by (4.5a) and (4.3b)).

The M, > 1 pressure-released limit is found by neglecting the second term on the
left-hand side in (4.3¢), the equation governing y. This leads (for isotropic initial
conditions) to quadratic amplification with respect to St of the turbulent kinetic
energy,

¢ _ ., (St
=1+ .
9o 3
(When the initial conditions are not exactly isotropic, the pressure-released limit is

given by ¢*(1)/q2 = 1 + (2t /q*)o(St)* — 2St(u1u:/q*)o.) A simple way to derive this
M, > 1 case is to ignore p in (2.1a) such that

(4.6)

l:t1 + Su2 = 0, 1:!2 = 1'43 = O, (4.761, b)

and use these expressions to obtain (4.6). Note that since Zu,/%t = 0, the vertical
velocity is advected in the pressure-released limit, whereas its Laplacian is advected
in the solenoidal limit (for which 2(V?u,)/ %t = 0).

Unfortunately, the pressure-released limit yields the only easily derived analytical
solutions for the Reynolds stress tensor. Hence numerical RDT solutions must be
compared to DNS results for anything other than the M; > 1 case. The system (4.3)
will be re-examined, however, in §5.

4.2. DNS for pure-shear flow

The homogeneous shear flow data used for the ensuing analysis are obtained from
DNS of the full non-isentropic compressible Navier—Stokes equations assuming spatial
homogeneity. The simulations are generated by a version of the code developed by
Spyropoulos & Blaisdell (1996) (see also Blaisdell et al. 1991), which uses a pseudo-
spectral spatial discretization with partial de-aliasing and a compact-storage third-
order Runge—Kutta time advancement scheme. A time-dependent transformation is
applied, yielding a coordinate system that moves with the mean shearing deformation
(Rogallo 1981). This allows an expansion of the solution in Fourier series, and
is equivalent to the above RDT procedure of using Lagrangian coordinates and
the F;; mean-distortion tensor. Under the influence of the constant linear shear
the shape of the domain in the streamwise/cross-gradient (x, y)-plane changes from
a rectangle at time zero to a parallelogram at later times (cf. figure 1d). In the
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Case M,y My M,, (Sq*/€)o Rey

By, 025 27 04 10.7 296
B; 025 40 06 160 296
B, 025 83 13 331 296
B; 025 120 19 480 296
B, 025 165 26 66.2 296
Bs 025 240 38 96.1 296
Bs 025 320 51 1281 296
B; 025 427 68 1708 296
By 025 534 85 2135 296
By 025 66.7 10.6 2669 296

TaBLE 2. DNS initial parameters for pure-shear runs. Quantity M, based on large-eddy lengthscale
q/e; M,, computed using cross-gradient integral lengthscale, as in Sarkar (1995). (Initial field
obtained from unstrained precomputation.)

cross-gradient/spanwise (y,z)-plane, the domain always remains square. When the
angle between the initially Cartesian x- and y-axes decreases to 45°, the solution is
projected onto an alternative domain of the same volume that is skewed ‘backwards’
so that the x,y angle is —45°; the simulation is then continued until the domain
is again skewed to the point that the procedure must be repeated (Rogallo 1981).
This ‘remeshing’, which is necessary to avoid grids with aspect ratios that approach
infinity, produces a loss of energy at high wavenumbers and therefore leads to a
discontinuity in temporal statistics (Blaisdell et al. 1991). However, as will be seen
below, the practical importance of this uncertainty in the DNS results is limited, and
does not adversely affect any of the conclusions of this study.

Intrinsic parameters that characterize the flow include the initial turbulent Mach
number M,y = qo/ay (recall that %qé is the initial turbulent kinetic energy and ag the
initial mean speed of sound); the initial distortion Mach number Mgy = M,y S ¢2/eo
(S is the constant mean shear and ¢, the initial total (solenoidal plus dilatational) rate
of turbulent kinetic energy dissipation); and the initial turbulent Reynolds number
(Re))y = qo*/v eo. The ratio of the distortion Mach number to the turbulent Mach
number r = S g2 /e, characterizes the rapidity of the shear. A series of ten simulations,
denoted By to By, are performed. The non-dimensional parameters M,,, M, and
Re, defining the ten cases are given in table 2; also included are the initial non-
dimensional strain rate (Sq?/e), and to help facilitate comparison to Sarkar’s earlier
DNS study, the equivalent values of the initial gradient Mach number M, he used
to define his cases (using a transverse integral lengthscale; see below). The fluid is
assumed to be an ideal gas with ratio of specific heats y = 1.4 and a temperature-
dependent viscosity u oc T %¢7. The Prandtl number is set to 0.7. Each simulation has
the same initial M,, equal to 0.25. Following Sarkar (1995), the initial distortion Mach
number is progressively increased for cases By to By by modifying the shear rate S,
all other non-dimensional parameters being unchanged. The initial distortion Mach
number varies from 4 to 67; the initial shear rapidity ranges from r = 11 to 267.
Each run uses a 96° mesh overlaying the computational domain, with streamwise,
cross-gradient and spanwise lengths in the ratio 2:1:1.

Initial conditions are obtained from isotropic turbulence that has evolved from
purely solenoidal velocity fields to ones that are to a good approximation in acoustic
equilibrium. These initial fields are generated by running the code with no mean
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straining for about 2 units of ‘eddy turn-over time’ ¢>/e (measured in terms of
quantities at the time the shear is applied), until they develop realistic triple-velocity
correlations and dilatational energy for the given turbulent Mach number. This
would be unnecessary if we were only interested in asymptotic behaviour (such as
the M, dependence at large St examined by Sarkar 1995), since the later stages of
sheared homogeneous compressible turbulence evolve to become independent of the
initial data, allowing one to apply the shear directly to ‘unphysical’ initial conditions
(Blaisdell et al. 1991; Sarkar 1995). But since here our interest is in both early and
late times, the unstrained ‘precomputations’ are required. They begin from uniform
density and pressure fields, and a random solenoidal velocity field, all of whose spectra
are proportional to E(k) = k* exp(—2k?/k;); the peak wavenumber, k,, locates the
maximum initial value of the spectra, and is chosen such that k,L,/2n = 8, where
L, is the size of the domain in the cross-gradient (and spanwise) direction. Choosing
this relatively small value of k, allows us to obtain Reynolds numbers larger than
if k, had been larger (cf. Blaisdell et al. 1993; Sarkar 1995); however, because the
streamwise lengthscales of the turbulence grow under the influence of the shear, this
means that the periodic boundary conditions affect the solution sooner than they
would for a larger-k, computation. Consequently, we have taken care to ensure that
the DNS results presented below are independent of the domain size.

In order to explore the relevance of the RDT to Sarkar’s (1995) DNS results,
two of the simulations, cases B; and B,, are respectively similar to his runs A;
and A4. The initial M, is thus chosen to be 4 for case B; and 8.3 for case B,.
Because our measure of the shear rapidity is based on the large-eddy lengthscale
/ = q*/e, instead of the integral lengthscale of the velocity in the transverse shearing
(cross-gradient) direction used by Sarkar to compute his gradient Mach number
M,, these values of M, closely correspond to the M, of 0.66 and 1.32 of his runs
A; and Ay, respectively. (As we shall see, these two simulations by Sarkar can be
considered as falling within the rapid-distortion regime, in the sense that they give
results that are closely approximated by RDT solutions that use his case A; and A4
parameters.) Although for the parallel B;/A; and B,/A4 cases the effective initial
distortion Mach numbers are approximately the same, the turbulent Mach numbers
M, for Sarkar’s and the present results are not. This is mainly a consequence of
choosing to employ fully developed initial conditions; since a finite time is required
for the unstrained precomputation to develop realistic turbulence, and during this
time the turbulent Mach number rapidly decays, the initial turbulent Mach number
used here, M,, = 0.25, is smaller than the constant M,, = 0.4 employed by Sarkar.
However, when the distortion Mach numbers match, because the initial M, for the
previous and present DNS are of the same order, so are the initial M,/M, ratios.
Because the peak in the initial spectra was chosen to be at a fairly low wavenumber,
k, = 16m/L,, the turbulent Reynolds number Re, ~ 300 of the initial field generated
by the precomputation is significantly larger than the initial Re, ~ 200 used by
Sarkar. Spectra were examined to verify that at this Reynolds number the 96°-grid
is sufficient to accurately resolve both the initial and sheared turbulent fields. It was
mentioned earlier that during the computations the integral lengthscales grow so that
eventually the large eddies fill the computational domain and the simulations become
invalid. The density integral-lengthscale is a good measure of whether or not this has
happened (Blaisdell et al. 1991). Accordingly, the two-point correlation of the density
field was monitored to verify that the solutions are not adversely influenced by the
periodic boundary conditions before the time at which each simulation was stopped,
which varied between St = 10 and 15.
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FIGURE 6. Turbulent kinetic energy histories for pure-shear flow: ,(4.6); - , DNS with
initial M, ranging from 4 (lower) to 67 (upper). Arrow shows trend with increasing M,.

4.3. Numerical RDT and DNS results

Histories of the total turbulent kinetic energy from the DNS are presented in figure 6,
plotted against the non-dimensional shear rate St. (The discontinuity at odd values
of St is caused by the remeshing procedure, explained above.) As predicted by the
RDT analysis in §4.1, we find that all the curves are bounded by the pressure-released
(My > 1) limit represented by the solid curve. The rate of energy amplification
monotonically increases with initial M,, at low St, and becomes linear at large St.
The linear growth rate is much smaller, however (by about a factor of three for
the lowest-M,; DNS run at St =~ 12, for example) than the large-St RDT prediction
for the incompressible case, @ (q?/q*(0)) /0(St) ~ 2In2 (Rogers 1991). In fact,
both the asymptotic incompressible RDT solution and that at general St consistently
overpredict the magnitude of ¢2(t)/q*(0) observed in the compressible DNS. However,
we shall subsequently see that the history of the TKE production rate given by the
solenoidal RDT analysis is relevant to the fully compressible flow.

The development of the temporal growth rate of the turbulent kinetic energy is
shown in figures 7(a) and 7(b) (only DNS results not directly affected by the remeshing
discontinuity are included), and will be discussed further below. (The oscillations in
the DNS results are due to the statistical uncertainty associated with the limited
sample provided by a domain of finite size, while the slight ‘waviness’ at large times
in the RDT histories is the result of the wavenumber discretization (equidistant in
logk, see Cambon 1982; Benoit 1992) needed to solve (2.12), and also the difficulty in
resolving at large wavenumber the high frequencies ak introduced at large St.) The
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FIGURE 7. Histories of the temporal energy growth rate for pure-shear flow: ,(4.9);(a) - ,
DNS; (b) ----- , RDT. Initial M, ranges from 4 to 67 for both DNS and RDT; arrows show trend
with increasing M,.

growth rate is defined by the non-dimensional parameter (as in Sarkar’s paper)

1 dx

=Sx dr’ (4.8)

where " = %qz. Figure 7 indicates that for St < 4 the growth rate increases with
initial distortion Mach number M,, and tends toward the pressure-released limit
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FiGure 8. RDT histories of the temporal energy growth rate for one-dimensional axially compressed
flow: , analytic RDT limits: lower, pure-solenoidal regime; upper, pressure-released regime;
~~~~~ ,case Ay,; ———— , case Ay; - -— = , case As.

(solid curve) given by

P L, (49)
3+ (St)

which represents the maximum growth rate, found for initial M,y > 1. However, the
trend is reversed at larger St: A decreases with increasing M. It is noteworthy that
all the curves exhibit this transition from increasing to decreasing growth rate with
M, near St ~ 4 or 5. This ‘crossover’ feature can only exist when the mean velocity
field is rotational; to illustrate, RDT histories of the temporal energy growth rate for
the one-dimensional axisymmetric compression discussed above (cases 4; to A;) are
presented in figure 8. Here A is observed to scale monotonically with M,,, which
varies from O for the lower solid curve, to 5 for the dotted, 29 for the chain-dotted,
87 for the dashed, and infinity for the upper solid curve (the two theoretical curves
— the M; = 0 solenoidal and M; — oo pressure-released limits — being obtained by
taking the time derivative of (3.5) and (3.4), respectively). The implication is that
the crossover is due to the coupling of the solenoidal and dilatational velocity fields
mediated by m,3, which is equal to zero if the mean flow is irrotational.

What is thought to be one of the most noteworthy results of this study is found in
figure 7, which shows that the general M,; dependence observed in the homogeneous-
shear DNS is also present in the RDT. Although there are some quantitative dif-
ferences between the RDT and DNS data (the DNS growth rates are consistently
smaller than those predicted by the RDT, and consequently the asymptotic values of
A at large St are not the same), in general the agreement is quite striking, even in the
approximate location of the St ~ 4 crossover transition.

Continuing our examination of the DNS and RDT results and their implications,
we next use (1.4) to derive the exact equation for the evolution of 4 in homogeneous
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FIGURE 9. Histories of the non-dimensional production term —2by, for pure-shear flow: (a) - - - - - ,
DNS; (b) -+ , RDT; lower, incompressible run performed using the incompressible-flow
version of MITHRA; upper, pressure-released limit. Initial M, ranges from 4 to 67 for both
DNS and RDT; arrows show trend with increasing M,.

shear flow:
€ +e;— 11,
A= Dby, — ST
bz SH
e+ €4 — 11
= b (1= SELE) bt ), (4.10)

where by, = wuy /24 = —P/2SH" is the relevant component of the Reynolds
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FiGure 10. DNS histories of the sum of pressure—dilatation terms and rate of kinetic energy
dissipation, scaled by the production term, for pure-shear flow. Lines included only as an aid to
viewing, to reveal trends with M,.

stress anisotropy tensor, which represents the non-dimensional production term;
1e = (€5 +€4—1I1,4)/2 is the sum of the total (solenoidal plus dilatational) dissipation
rate and the pressure—dilatation correlation, scaled by the production term. Tavoularis
& Corrsin (1981) have shown that in incompressible homogeneous shear flow by, and
€s/SA" tend toward equilibrium values that are independent of initial conditions.
As first found by Sarkar (1995), and demonstrated in figures 7(a) and 7(b), 4
also approaches a constant asymptotic value A4, in the compressible case, with A,
depending on M,. According to (4.10), the change in A, with compressibility (i.e. M)
can be due either to a change in b, — and thus in the production — or to a change
in the solenoidal dissipation and dilatational effects represented by y.. DNS histories
of —2by, are plotted as the broken curves in figure 9(a), and compared to the RDT
histories (figure 9b). The evolution of the corresponding term for incompressible
homogeneous shear flow, which was generated using the incompressible-flow version
of the RDT code (Cambon et al. 1985), and the pressure-release limit, are also shown,
by the solid curves. The magnitude of the non-dimensional production is found to
increase with increasing My, for all the cases considerated for St < 4 or 5, while at
large St, the turbulent kinetic energy production by the mean shear is systematically
reduced as M, increases. As was the case for the A-histories, the St ~ 4 transition
found in the DNS is also predicted quite well by RDT, although the underestimation
by the RDT of the stabilizing effect of compressibility via reduced production becomes
more pronounced with increasing St. The lack of complete quantitative agreement
notwithstanding, the general correspondence between the DNS and RDT histories of
by, is perhaps the most significant (and surprising) result of this study.

The other mechanism present in (4.10) is investigated in figure 10, where DNS
histories of y. are shown. After an initial transient, y. tends toward a constant value,
independent of the initial distortion Mach number. This implies that the reduction of
amplification of energy growth rate with increasing compressibility (with respect to
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FIGURE 11. Histories of solenoidal bj;-component anisotropy tensor for pure-shear flow: —— |
incompressible run performed using the incompressible-flow version of MITHRA; (a) - - -+ , DNS;
by ----- , RDT. Initial M, ranges from 4 to 67 for both DNS and RDT; arrows show trend with

increasing M,. Lines in (a) included only as an aid to viewing, to reveal trends with M,.

the incompressible case) is mainly due to less efficient production, through reduction
of the anisotropy of the Reynolds stress tensor. In other words, changes in the explicit
compressibility terms — those that appear as sources or sinks in the turbulent kinetic
energy equation — are not as important as compressibility-induced changes to the the
structure of the flow. As first revealed by Sarkar’s earlier DNS study, it is the kinetic
energy production that is primarily affected by compressibility.

In an attempt to separate the effect of compressibility on the solenoidal and dilata-
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tional contributions to the turbulent kinetic energy, the Helmholtz decomposition of
the fluctuating velocity field was used for the pure shear as well as the one-dimensional
compression flow; no evidence of scaling with M,q was found. However, decompo-
sition of the b1, component of the anisotropy tensor into solenoidal and dilatational
components defined by

(5) - () .
R’g ®_ @, bi(t) = M _ % (4.11a,b)
a;(1) 3 qq(t) 3

(where Rf;) = uiu’ and Ri(;i) = u;‘u‘;) is more fruitful. Histories of these terms are
shown in figures 11 and 12, respectively. We see that the solenoidal contribution is
dramatically decreased over the entire range of St whereas the dilatational one is
essentially unaffected by compressibility. The structure alteration mentioned above
is therefore due almost entirely to changes in the solenoidal field. For all the cases
considered both contributions approach constant equilibrium values at large St. The
RDT predicts that the dilatational component is essentially independent of M, for all
values of St, while the solenoidal component exhibits a pronounced M,; dependence
over the entire range of times shown, with the strong suggestion of collapse to a
unique value (independent of M;), as St — co. The DNS results, on the other hand,
while showing the same general trends as the RDT histories do, tend to be more
sensitive to M, with the large-St limits of both b\) and b({? depending upon the
initial distortion Mach number. This difference between the RDT and DNS results is
probably due to the nonlinear and dissipative terms that are present in the DNS; the
importance of these terms will be discussed in the next section.

bij(S)(t) =

5. Discussion and conclusions
5.1. General comments

The objective of this work has been to develop a general RDT code capable of
solving linearized equations valid for compressible homogeneous turbulence for a
large range of the two compressibility parameters important for turbulence subjected
to mean shear, M, and M,. Two types of mean uniform velocity gradients (spherical
compression and one-dimensional axisymmetric compression) have been examined in
order to validate the numerical code; results of the RDT code have been compared
with analytical solutions and DNS data at high compression speed, and have demon-
strated good agreement. The pure plane-shear flow was then investigated and RDT
and DNS results have been presented and discussed in the light of recent simulations
performed by Sarkar (1995). As in his earlier study, we find that changes in the
‘structure’ of the turbulence (i.e. altered production of turbulent kinetic energy) are
much more significant than changes associated with the new (compressibility-induced)
source terms in the turbulent kinetic energy equation.

When viewed separately, the primary value of the RDT and DNS results presented
here is solely to reconfirm (and extend the range of validity for) many of Sarkar’s
earlier findings regarding the structure-altering role of compressibility in homogeneous
sheared turbulence. However, when they are viewed together, their broad general
agreement reveals the extent to which the structural alterations are governed by
linear processes. Although the agreement is not exact (for example, in the St — o
asymptotic limits predicted for 4 and by;), many of the RDT and DNS results are
surprisingly close to each other. In particular, we note that at early times the RDT
and DNS histories are very similar, and especially that the RDT correctly locates



332 A. Simone, G. N. Coleman and C. Cambon
0.8 T T T T [ T T T T I T T T T

(@)

06 -
-2b%, 04

0.2

0.8
0.6
-2b9, 04

0.2

L L L s 1 L ' ' s 1 s s : .
0 5 10 15
St

FIGURE 12. Histories of dilatational bj,-component anisotropy tensor for pure-shear flow:
legend as in figure 11.

the St ~ 4 ‘crossover’ transition that indicates the time at which the influence of
increased compressibility (i.e. M,) changes from destabilizing to stabilizing. Because
of the similarity of the RDT and DNS solutions, we conclude that much of the effect
of compressibility (at least that which influences the TKE production and shear-stress
anisotropy by»), which was heretofore commonly thought to be due to nonlinear
phenomena, can be explained in terms of linear rapid-distortion theory. This is
a central conclusion of this paper. It is important to realize that the magnitudes
of the compressibility parameters (M, and M,) considered in this study are not
unrepresentative of those found in engineering flows of practical interest; for example,
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based on the analysis of Sarkar (1995), we estimate that the distortion Mach numbers
employed for cases B; and B, (cf. table 2) correspond to convective Mach numbers
found in a compressible mixing layer of less than one (see his figure 14). The present
study therefore appears to be much more relevant than one might expect of an
analysis based on rapid-distortion assumptions. Given this relevance, we now turn
our attention to its broader implications.

5.2. The ‘stabilizing’ effect of compressibility revisited

A comparison of the development of the growth-rate parameter A4 between RDT
results for axisymmetric compression (figure 8) and pure shear (figure 7a, b) illustrates
that increases in the distortion Mach number can cause the turbulence to become
either more or less energetic, depending upon both the type of mean deformation and
the time at which the flow is examined. In this section, we attempt to clarify the reasons
for, and the conditions that produce, both the stabilizing and destabilizing influence
of compressibility. We begin by considering deformations for which increasing M,
always causes the flow to become more energetic.

5.2.1. Irrotational distortions

Intrinsic compressibility is destabilizing — in the sense that it leads to generation
of greater turbulent kinetic energy than when the velocity fluctuations are purely
solenoidal — for all rapid irrotational mean distortions, throughout the history of
the flow; because the solenoidal field is unaffected by an irrotational deformation,
the sum of the solenoidal and dilatational kinetic energy will always be greater than
that found for the purely solenoidal case. This can be understood, without having to
utilize a Fourier representation, from the general solution of the linearized equations,

09

ui(x, 1) = F;I(X, ,0) u;(X, O)+6x‘ ,

(5.1a)

V=V 1y
1 1

¢ =p/p, (5.1b)
which is valid even for inhomogeneous flows. Equation (5.1) was extensively used by
Goldstein (1978) and Durbin & Zeman (1992), among others (the present notation
follows that of Cambon 1982 and Cambon et al. 1985, 1993). The first term on the
right-hand side of (5.1a) can be split into a solenoidal and a dilatational part (via the
Helmholtz decomposition), such that Fj‘l.1 (uj)o="Vi= I/i(s) + Vi(d); the dilatational part
is present for any anisotropic mean strain even if the initial velocity field is solenoidal.
Accordingly, the other term in (5.1a), which involves the pressure fluctuation, exactly
balances the dilatational part Vi(d) in the solenoidal limit M; — 0, and is zero in the
pressure-released regime (M, — o0). In other words, V; is the pressure-released RDT
solution, and Vi(s) denotes the solenoidal RDT solution:

w=vY Wl =v94¢, (5.2a,b)

1 1

The transition with increasing M, from the solenoidal to the pressure-released solution
accompanies the progressive emergence of uf, as V'@ is less and less balanced by
¢, at fixed (since it is unaffected by compressibility) uj. This suggests the simple
parameterization:

w = Vi+ f(Mo) (V" = V), (5:3)
where f(M,) is a monotonic function that varies from 1 to 0 as M, varies from
0 (representing the solenoidal solution) to infinity (yielding the pressure-released
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solution), with V; = Fj_i] (uj)o and its solenoidal projection Vi(s) being determined by
the Lagrangian distortion tensor and the initial conditions only. (Such a weighting-
function parameterization was suggested in a modified model for pressure—strain
correlations by Cambon et al. 1993.) This simple analysis is sufficient to explain the
main compressibility effects in RDT for irrotational mean flows. Further analysis,
however, requires the use of Fourier space in order to decompose V; into V,-(S) + Vi(d) in
a tractable form, and especially to study the coupled system of equations governing

ud and p, (2.18) and (2.19).

5.2.2. Vortical distortions: the pure shear

The above simple analysis is no longer possible if the mean distortion has a vortical
part. The Weber—Goldstein equation (5.1) is no longer valid, and the complete system
(2.12) must be considered. However, the pure-shear RDT and DNS results shown
above nevertheless exhibit the destabilizing trend predicted by (5.3), but only at small
St. At later times, for St greater than about 4, behaviour opposite to that implied by
the analysis in the previous section is found (figure 7). The reason for this transition
of the influence of compressibility from being destabilizing to being stabilizing will
now be sought.

The essential difficulty in trying to analytically solve the linear system of RDT
equations (4.3) for pure shear comes from the time-dependent character of the
coefficients that contain k(¢) (see (4.2)). Only when k; = 0 does this time-dependence
disappear, so that (4.3) is drastically simplified, yielding an oscillatory solution for
y (as in the acoustic unsheared case), and the pure-solenoidal solution for ¢'?. For
ki # 0 we focus on the restricted system of equations for ¢, with i = (2,3,4) only:

. K
& =SKKy, j= —2517‘5 —alz, =k, (5.4a-c)
where y = 9% /k and z = ¥ /a, are defined as in (4.3), and ¢ = —kK'¢p? is the
Fourier transform of the solenoidal part of V2u,, as shown in (4.5a). Only the vertical
(i.e. cross-gradient) velocity component (through ¢ and y) and the pressure (through
z) are present in the above, and the time-dependence of the coefficient is solely
through k?(t). Because the time-dependent parts of the right-hand side of both (5.4a)
and (5.4c) are in k?y, the new variable
¢
Z=z—— 5.5
78K, (55)
is time-invariant (Z = 0), and can replace z in the set of variables. Thus, in terms of
Z,¢ and y, the previous system can be written

. . K a2

7Z =0, &=SKk*y, j=-— <2sk41 + sz&) E—alZ. (5.6a—)
The latter equation is the key to understanding the time-dependence of (linear) com-
pressibility effects in turbulent shear flow; this is done by comparing the magnitude of
the two terms in the &-coefficient in (5.6¢): the first one, 2SK /k*, rapidly approaches
zero as St increases (provided K; # 0; if Ky = 0, it vanishes), whereas the second
one, a3/(SK;), remains constant. Hence, if St is sufficiently large, the inequality
28K /k* < a}/(SK;) holds, such that

2

5272 K? K? K
2 <l ng + K—ZZ — 2K—?St +(S1)?| (K. £)% (5.7)
0 1 1
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where (4.2) has been used to express the magnitude of the time-dependent wavenumber
in terms of its initial components, K;, K, and K3, and here / is the lengthscale
previously defined. Equation (5.7) is roughly equivalent to M, < (St)? for large St,

which defines the ‘large-St’ criterion as being St > M ;/ : (assuming that the ‘average’
magnitude of the components of K that significantly contribute to the energy are of
the order 1/7).

The ‘crossover’ behaviour cited above can be related to the change of regime
caused by passing from small St — where 2SK;/k* is relevant and can be dominant
with respect to a3/(SK;) at sufficiently large M; — to large St, where 2SK;/k* is
never significant, even at large M,. In the latter, even if the initial conditions are
characterized by large M, the asymptotic state will be essentially independent of M,,
since the 2SK;/k* term can be neglected in (5.6¢), which can then be differentiated
with respect to time to yield the simplified equation j + agk’*y = 0. Although k? varies
strongly with time in this equation, an oscillating (and thus bounded) solution for y
can be inferred using a WK B-type argument (o = aok; @/w? becomes small at large
St). Hence the behaviour at large St and that previously referred to as quasi-acoustic
or quasi-solenoidal are similar. Considering the dynamic behaviour at sufficiently
large St, with solenoidal RDT one can compare the fixed points (¢ = j = 0) of the
simplified system (5.6a—c) obtained by dropping the 2SK; /k* term. We find

¢ =%l —SKizo, y=0, z=0. (5.8)

The corresponding RDT solution in the pure-solenoidal case is
K
E=¢, y=0, dz=az = 2517‘50. (5.9)

Note that z = z* is equivalent to the classic Poisson equation, as in (2.19)—(2.20),
and z* is precisely the term that is neglected in (5.6¢) at large St. It is important
to point out that & = &(X,0) is an ‘initial’ condition chosen at any time for the
pure-solenoidal case, whereas &, zo for the fixed-point solution (5.8) can be viewed as
‘initial’ data chosen at a time (after the crossover) for which the inequality (5.7) holds.
The post-crossover state at intermediate St depends on the entire history, which is
influenced by M, during the early history of the flow.

This semi-analytical analysis can explain the change of regime passing from small
to large St. It cannot, however, explain why the crossover occurs near St ~ 4, for all
M,, and why, after the crossover, increasing M, causes the stabilization of the flow
revealed by the RDT and DNS results. Two characteristics of the RDT equations
can perhaps shed light on the matter:

(i) The first is the time-dependency of the wave vector, which physically reflects the
kinematic distortion of a material bipoint (linear fluid element) /;(t) advected by the
shear flow, in accordance with a wave-conservation law k;l; = constant (see (2.14)).
Consequently, the wavevector is primarily stretched (such that |k| increases) and its
orientation becomes more and more vertical, due to the increase of k,. This pure-
advection effect tends to transfer energy toward smaller and smaller scales, which are
less and less affected by compressibility (see e.g. figure 1 in Cambon et al. 1993 and
the related discussion).

(i) The second characteristic is the coupling term induced by the vortical part of
the mean deformation (see (2.12) and (4.3a,b)). Even though the distortion of the
wavevector also exists in an irrotational mean flow, this coupling term does not; this
implies that it plays an essential role in the pure-shear crossover behaviour, although
the coupling is less important at very small St (where the influence of the pure-
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straining irrotational part of the shear comes into play) and at very large St, for the
reasons given earlier in this section. Although for pure-shear flow the most important
effect of compressibility (in the rapid-distortion regime) is to alter the structure of
the solenoidal fluctuations, as reflected in the M,;-dependence of b(lsz) (figure 11b), the
ultimate source of this alteration is the feedback of the dilatational disturbances upon
the solenoidal field — since in a non-vortical mean flow the solenoidal fluctuations are
completely independent of M, and are equivalent to those found in the u;; = 0 case.

5.2.3. Nonlinear and dissipative effects

By comparing the RDT and DNS results presented above (see e.g. the byy-histories
in figure 9), one finds that much of the structural effect of compressibility is fairly well
reproduced by the linear rapid-distortion analysis. This is especially true during the
initial development of the flow, for a range of time that extends past that (St ~ 4) at
which the destabilization-to-stabilization change in the role of compressibility occurs.
At later times, however, as St — oo, the DNS histories exhibit a dependence upon
distortion Mach number that is not captured by the RDT. Although the asymptotic
non-dimensional production by, predicted by the RDT appear to be converging to
a unique value, independently of initial M, (figure 9b) (which is consistent with
the simplified fixed-point analysis in §5.2.2), the same cannot be said for the full
nonlinear solutions (figure 9a). Evidently, nonlinear and dissipative effects (the
dissipative scales receiving energy through the nonlinear cascade) are not essential for
predicting the general trends, although they are important in breaking the reversibility
of linear solutions, causing a dependence on the compressibility parameter M, of the
asymptotic results.

Some authors (e.g. Friedrich 1996) have recently pointed out that the dilatational
dissipation tensor e?j is strongly anisotropic in shear flows, with the vertical compo-
nent €4, being dominant. While a major theme of this paper has been the irrelevance
(compared to alteration of the turbulent kinetic energy production) of the rate of
dilatational dissipation of turbulent kinetic energy e¢; = %eﬁ-, one of the compo-
nents (i.e. 4,) becoming dominant with respect to the others could lead to further
modification of the Reynolds stress tensor, and thereby cause a further ‘stabilizing’
influence associated with compressibility. Although the RDT-based explanation of
compressibility effects offered here and that attributed to anisotropy of the dilata-
tional dissipation do not correspond, it is perhaps significant that both focus on the
behaviour of the vertical (cross-gradient) components of the quantities of interest
— be they velocity fluctuations, Reynolds stress tensors, or dissipation tensors. The
recent DNS results analysed by Speziale et al. (1995) also suggest that a detailed
comparison of the components of various anisotropy measures predicted by RDT
and DNS might be a fruitful endeavour.
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